Massachusetts Institute of Technology

Power Electronics Research Group

Opportunities, Progress and Challenges in High-Frequency Power Conversion

David Perreault

Circa 2036

20 kW Kenotron Rectifier, Circa 1926 (From Prince and Vodges, 1927) 1 kW, 1 MHz 400-12V Converter, Circa 2021 (Mike Ranjram, ASU)

Current technology supports power electronics at the kW scale operating at low MHz frequencies

Example: Datacenter converter, 380 V to 12 V @ 1 kW, $\eta > 97\%$, f_{sw} ~1 MHz

M. Ranjram et al, "A 380-12V, 1kW, 1 MHz Converter Using a Miniaturized Split-Phase Fractional Turn Planar Transformer," TPEL Feb. 2022.

Current technology supports power electronics at the kW scale operating at low MHz frequencies

- We have the opportunity to advance kW-scale power electronics to operate at still much higher frequencies
 e.g., 10+ MHz
 - □ in the "High-Frequency" (HF, 3-30 MHz) range

Outline both the opportunities and the challenges in moving to these frequencies

Goals

- Miniaturization (smaller, lighter)
- Increased performance (bandwidth,...)
- Improved construction / integration
- Enable new applications
- Reduced cost (eventually...)

Energy storage requirements vary inversely with frequency: C, L proportional to 1/f

Passive Components Dominate

Passive components dominate size, weight and loss

- **Both power stage and filters are important**
- □ Magnetics are especially challenging

Miniaturizing Magnetics is *Fundamentally* Difficult

- Scaling laws work against miniaturization of power magnetics
 - Simplified case: power handling (VA) of a fixedfrequency ac inductor
 - Flux density B₀ limited by core loss
 - **Current density** J_0 limited by winding loss
- Power handling ∝ (linear dimension)⁴
 Volume ∝ (linear dimension)³
 Power density (power/vol) ∝ (linear dimension)
 Magnetics get worse at smaller sizes!

$$VA = V \cdot I \propto (NfB_0A_C) \cdot \left(\frac{J_0A_W}{N}\right) = f \cdot B_0 \cdot J_0 \cdot (A_CA_W)$$

Sullivan, et. al., "On Size and Magnetics: Why Small Efficient Power Inductors are Rare," *International Symposium* on 3D Power Electronics Integration and Manufacturing, June 2016

Miniaturizing Magnetics is *Fundamentally* Difficult

- Scaling laws work against miniaturization of power magnetics
- In principle, higher frequency can enable greater power handling (or smaller size at constant power)

$$VA = V \cdot I \propto (NfB_0A_C) \cdot \left(\frac{J_0A_W}{N}\right) = f \cdot B_0 \cdot J_0 \cdot (A_CA_W)$$

Sullivan, et. al., "On Size and Magnetics: Why Small Efficient Power Inductors are Rare," *International Symposium* on 3D Power Electronics Integration and Manufacturing, June 2016

Factors in increasing switching frequency

- Magnetic component design
- Power devices
- Sensing and control circuitry
- Parasitics and packaging
- **Circuit design**

Scaling of Magnetics Size with Frequency

■ Magnetic component size *can* decrease with frequency, but only over a limited frequency range (limited by core loss)
 □ Allowable flux density B₀ decreases with f at constant loss density VA = V · I ∝ (NfB₀A_C) · (<sup>J₀A_W/_N) = f · B₀ · J₀ · (A_CA_W)
</sup>

Example: Resonant inductor providing $|Z| = 10 \Omega$ (1.6 uH at 1 MHz), $Q_{min} = 100$, $\Delta T < 75$ °C, |Iac| = 0.5 A

Magnetic Material Performance Factor at HF

A.J. Hanson et al, "Measurements and Performance Factor Comparisons of Magnetic Materials at High Frequency," *IEEE Transactions on Power Electronics*, Vol. 31, No. 11, pp. 7909-7925, November 2016.

Continued opportunity for miniaturization with frequency

Main power stage (core-loss-limited) magnetics density: Performance factor improves to ~30 MHz with available materials

Other components (e.g., in EMI filters, etc.) scale inversely with frequency and can substantially improve at higher frequency

High-Frequency Magnetics Design

- Design of improved high-frequency power magnetics remains a high-impact research challenge
 - \Box Leverage high-frequency magnetic materials (e.g., at low μ)
 - □ Address skin and proximity effects, especially at high current
 - Cu skin depth ~21 μm at 10 MHz, 25°C
 - Litz wire presently less useful above several MHz
 - **50** AWG wire diameter is ~25 μm

High performance designs in the HF range are achievable

HF Magnetics

Must address key challenges that dominate at HF

Challenge 1: Fringing field loss

 Fringing fields at energy storage gap lead to eddy current losses (proximity effect)

lumped gap

quasi-distributed gap

Solution 1: Use quasi-distributed gaps that do not impose HF fringing fields at conductor

Challenge 2: Current distribution (skin effect)

Conventional designs have imbalanced H fields that give poor winding utilization

Solution 2: Design a magnetic structure that balances the fields around the windings, enabling better conductor utilization

R. Yang et. al. "A Low-Loss Inductor Structure and Design Guidelines for High-Frequency Applications," IEEE Transactions on Power Electronics, 2019.

Example: Low-Loss HF Inductors

Leverage quasi-distributed gaps and field balancing for reduced conductor loss

Twice the Q of conventional inductors using the same magnetic material

16.6 uH, 2 A, 3 MHz	5/9/10/48
performance	(litz)
Experimental Q	980

R. Yang et. al. "A Low-Loss Inductor Structure and Design Guidelines for High-Frequency Applications," IEEE Transactions on Power Electronics, 2019.

Approach scalable to a wide range of applications

Example: High-Power High-Frequency Inductor

- 570 nH, 13.56 MHz inductor , Q = 1150 @ 80 A_{pk, ac} / 3.9 kV_{pk,ac}
 - □ 155 kVA @ 13.56 MHz
 - Fully self-shielded
 - □ Smaller, more efficient than conventional designs (Q=1150 @ vol = 1.6 l)
 - Designed for use in high-power RF applications (power amplifiers, matching networks)

Outer core and Inner core

Winding

Inner core + outer core top view

Endcaps

Inductor with Shield

15

M. Joisher et. al. "High-Performance High-Power Inductor Design for High-Frequency Applications," APEC 2024. (Tuesday, Session T.08)

Power Devices

Power devices have advanced tremendously

- Improved performance factors (R_{gate}·C_{gate}, R_{on}·C_{oss}) facilitate operation at 10s of MHz
- High current per unit die area facilitates small devices

Important challenges remain for HF

- □ Hysteresis losses in output capacitors ("C_{oss} loss")
 - Si & GaN transistors and SiC diodes
- Dynamic on-state resistance
 - in GaN transistors

C_{oss} loss important at HF; may exceed conduction loss
 Energy loss/cycle can increase with frequency
 Loss characteristics can depend heavily on waveshape

Loss per cycle parameterized in frequency 650 V GaN device (Zulauf 2018, Stanford)

G. Zulauf et. al. "Coss Losses in 600 V GaN Power Semiconductors in Soft-Switched, High- and Very-High-Frequency Power Converters," TPEL, Dec. 2018.

- It is important for device manufacturers to improve HF device losses including dynamic R_{ds,on} and C_{oss} loss
- Recent results are promising (trapezoidal-wave case)
 - Limited loss increase with dv/dt
 - Loss/cycle gets better with frequency
 - Newest gen devices greatly improved

S. de Filippis et. al. "Experimental Characterization of Dynamic C_{oss} Losses in 600V GaN HEMTs based on a Novel and Simple Calorimetric Method," APEC 18 2024. (Wednesday, Session T14)

Sensing and Control

Sensing and control circuits have likewise advanced tremendously

Both processes and circuit design

Continued advances are needed
But often not the limiting factor

If needed, address via design

- Avoid controls requiring low latency
- Leverage circuits with low-side switching

Parasitics and Packaging

For a given component / device size, parasitic effects become more dominant as frequency increases

- **Capacitive currents increase, inductive voltages increase**
- Inductive parasitic effects also scale up with current (device area) and voltage (spacing requirements)
- Impacts loss, EMI, etc.

- Advances in packaging, interconnects/layout, fabrication and materials will be valuable to continue increases in frequency
 - Augment with circuit design techniques to mitigate and/or usefully absorb parasitics
 - **u** e.g., as often done in single-switch inverters and rectifiers

EMI is often cited as a roadblock to higher frequencies
Structures of a given size do emit more easily at higher frequencies

However:

- Techniques already exist to curb unwanted emissions at much higher frequencies and rf power levels than considered here
 Widely applied in rf power design (e.g., rf transmitters)
- EMI filter size can get much smaller at higher frequencies
 It's not a bug, it's a feature!

EMI Example: LED Driver (30 W, f_{sw} 5 – 10 MHz)

30 W LED Driver: switching frequency 5 – 10 MHz (variable) 120 V_{ac} input, 35 V dc output, 30 W @ 50 W/in³

Filter small relative to total solution size

Whole converter smaller than the EMI filter of a conventional design

S. Lim et. al., "AC-DC Power Factor Correction Architecture Suitable for High Frequency Operation," TPEL, April 2016.

The path to HF facilitated by "beachhead" applications
Applications deriving compelling benefits from high-frequency operation

Useful for developing and validating new devices, components, and design techniques

Serve as early markets for HF designs and components

Beachhead Applications for HF Power Electronics

Industrial RF Power

5 kW, 13.56 MHz inverter (H. Zhang, MIT 2022)

1.5 kW, 13.56 MHz TMN (A. Al Bastami & A. Jurkov, MIT 2020)

1 kW, 13.56 MHz, η 95.4% inverter (W. Braun, MIT 2019)

HF Wireless Power Transfer

1 kW, 6.78 MHz, η 95% IPT (Gu & Rivas, Stanford 2021)

3.7 kW, 13.56 MHz, η **93% CPT** (Regensberger, Cornell 2022)

3 kW, 3.39 MHz, η 95% IPT (Nikiforidis, Imperial 2023) 24 Summary: There is still plenty of room at the top!

Much higher frequency power electronics appear possible le.g., 10's of MHz at kW+ power scales

Benefits to miniaturization, performance, applications,...

Many challenges to be addressed Magnetics, devices, packaging, circuit design and control

We have the tools to get there

□ The next years are going to be exciting!

HF Magnetics - Continued Challenges

- Improved means to carry high currents at HF frequencies remains an important open challenge
 - Carrying current in many "layers" with low proximity-effect loss desirable

Example: "Switching Cell in Package"

Customized packaging to reduce switching loop inductance

FIG 7 An SCiP setup starting with two MOSFETs on a ceramic substrate [with direct copper boding (DCB)] with (a) one regular chip and one flipped, (b) a next layer in PCB technology connecting the semiconductors for out connection, and (c) a last layer closing the dc link with primary dc-link capacitors.

FIG 8 The production steps: (a) chips with DCB, (b) the underfill of a flipped chip, (c) PCB layers manufactured and SMD components assembled, and (d) a module including electrical interfaces and a plastic frame to fulfill the creepage distance. (Photos courtesy of Eckart Hoene, Fraunhofer IZM.)

E. Hoene et. al. "Outlook on Developments in Power Devices and Integration," IEEE Power Electronics Magazine, March 2018

EMI Example: PFC Power Supply (250 W, f_{sw} 1 – 4 MHz)

250 W PFC Power Supply: switching frequency 1–4 MHz (variable)
 Universal ac input, 24 V dc output, 250 W @ 35 W/in³
 Meets 80+ Platinum efficiency standard (95.33% at full load)

Filter small relative to total solution size (8% of total box volume)

Example: 5 kW, 13.56 MHz Inverter

5 kW, 13.56 MHz inverter w/ fast response and wide power range

H. Zhang, "Techniques for Efficient Wide-Range Radio-Frequency Power Generation," MIT PhD Thesis, 2022.

Example: 1.5 kW, 13.56 MHz PSIM TMN

Tunable Matching Network (switched-mode ac/ac converter)

A. Bastami et al, "A 1.5 kW Radio-Frequency Tunable Matching Network Based on Phase-Switched Impedance Modulation," OJPE, 2020.

Current technology supports power electronics at the kW scale operating at low MHz frequencies

Example: Datacenter converter, 380 V to 12 V @ 1 kW, $\eta > 97\%$, f_{sw} ~1 MHz

