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Exponential growth in global data center power consumption
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Sources: IEA including crypto mining energy use; Infineon assumption and calculation; McKinsey, BCG
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https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/investing-in-the-rising-data-center-economy
https://www.linkedin.com/pulse/us-data-center-power-outlook-balancing-competing-consumption-lee-iz4pe/?trackingId=HUdUv0sARxW55L9exZtfTA%3D%3D


What can we do about it?
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Projected electricity consumption of power loss in 

data center power delivery chain

1% of global energy 
consumption from AI 
power conversion loss

[Assuming 85% end-to-end efficiency for all years]

➢ 15% total loss in power delivery chain
➢ To offset only the power conversion loss 

with green energy would require:
❑ 400 million PV panels
❑ 1000 sq. km (350 sq. mi.) solar farm in 

a high-irradiance area, e.g. Arizona
➢ If the power is generated from natural gas:

❑ Losses will produce 0.5 billion metric 
tons of carbon dioxide over 5 years

❑ Equivalent to adding 20 million 
passenger cars to the road

➢ Saving just 1% efficiency anywhere in the 
power delivery chain will reduce carbon 
emissions by 35 million tons, equivalent to 
1.4 million passenger cars
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Design criteria in data center power systems

➢ Size, power, lifetime, and efficiency must 

meet minimum requirements/targets

➢ Efficiency improvement beyond the 

target is fine, but a lower cost alternative 

might be selected instead

➢ Highest efficiency solution doesn’t 

always get implemented!
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Size/ 
dimensions = 

target

Output 
power = 

target

Robustness/ 
reliability/ 

lifetime

Efficiency = 
target

Cost < target



Relative merits of each semiconductor 

technology with today’s state-of-the-art
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Data center power delivery system transitioning from enterprise to 

hyperscale architecture requires higher power density & efficiency

~85%
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Addressing the growing demand of AI with higher power 

on-rack PSUs, using all 3 semiconductor technologies

>
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Si SiC GaN Si SiC GaN
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8 kW server/AI PSU with Si+SiC+GaN

8kW in 73.5x40x446 mm3 

→ ~100W/inch3
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12 kW server/AI PSU with Si+SiC+GaN

180 - 305Vrms
500V

250V

250V

50V

2 x 6 kW modules, each with ½ U height, stacked vertically to fit 1U max height

3x Interleaved  

3-L CCM Totem-Pole PFC

2x Interleaved  

Power Pulsation Buffer

2x ISOP DCX with matrix 

transformers

716mm

17.5mm

64mm

3x RM12LP
inductors

2x RM12LP
inductors

4x RM12LP
transformers
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2-stage power delivery with vertical power flow

Move from lateral to vertical power delivery
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CPUs
GPUs

10V – 15V 

Power stage
12 V to 0.75 V

IBC 4:1
unregulated

1 Phase

ASIC 
SoC

Power stage
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5V - 7.5V

IBC 8:1
unregulated

1 or 2 
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48VIN
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Power stages modules 
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module

PCB
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L
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module/down 

10



48-to-n V IBC using hybrid switched capacitor topology 

with GaN + Si
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GaN takes IBC efficiency to the next level, due to lower dead-time required for ZVS, 
dramatically reducing transformer losses as well as transistor loss.
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Vertical power delivery to GPU/CPU using chip-embedded 

Si and novel magnetics design, achieving >92% efficiency

➢ Chip-embedding LV Si MOSFETs improves EMI and heat extraction
➢ Inductor has two tasks: electrical and thermal conduction, tightly bound to each other 

Heatsink

I/Os VIN GND VOUT

Heat

Current

SW nodePad
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54V Vin

VcorePWM_PRI2

PWM_PRI1

54 V to 0.7 V Module

Smart Driver Sync (SDS)
NFETS

➢ 300 A Module Capability

➢ Efficiency 88% at 0.7 V / 300 A

➢ Combination of GaN HEMT 

and Si Trench MOSFET 

Technology

Direct ~48 V to core conversion, 300 Aout with 

half-bridge current doubler, using GaN + Si
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AI training will drive rack power to even higher power, 

triggering new architectures and topologies

Source: OCP Global Summit, October 2024.

today

60 kW 120 kW 250 kW 500 kW

Single-phase AC 

230 – 347 V AC / 48 V DC

Three-phase AC 

 480 – 600 V AC / 400 or 800 V DC

Facility level: SST 

HV AC to HV DC

Before AI 

Up to 33 kW 1 MW
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HV IBC driven by 3ph AC input architecture 

➢ 800 V to 50 V stage on rack 

will require an ambitious 

power density target

➢ Full-GaN solution may be 

the logical choice
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Si, SiC, and GaN costs dropping at different rates, approaching 

cost parity/crossover point by end of the decade
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Conclusions

➢ Our mission is to improve data center power delivery 

efficiency with practical solutions, and the time is now!

➢ Holistic approach to semiconductor selection enables the 

best optimization to meet application requirements

➢ Call to action:

– Develop solutions that meet the application targets, with some 

efficiency bonus on top of the minimum requirement

– Keep an open mind to all three semiconductor

➢ Join us to shape a sustainable AI future
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Thomas Neyer, Infineon Technologies AG

THANK YOU
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