

Improving cloud computing and Al power delivery efficiency with a holistic semiconductor approach

Thomas Neyer, Infineon Technologies AG

Exponential growth in global data center power consumption

Sources: IEA including crypto mining energy use; Infineon assumption and calculation; McKinsey, BCG

What can we do about it?

> 15% total loss in power delivery chain

- To offset only the power conversion loss with green energy would require:
 - 400 million PV panels
 - 1000 sq. km (350 sq. mi.) solar farm in a high-irradiance area, e.g. Arizona
- If the power is generated from natural gas:
 - Losses will produce 0.5 billion metric tons of carbon dioxide over 5 years
 - Equivalent to adding 20 million passenger cars to the road
- Saving just 1% efficiency anywhere in the power delivery chain will reduce carbon emissions by 35 million tons, equivalent to 1.4 million passenger cars

A P==C2025

Projected electricity consumption of power loss in data center power delivery chain

[Assuming 85% end-to-end efficiency for all years]

Design criteria in data center power systems

- Size, power, lifetime, and efficiency must meet minimum requirements/targets
- Efficiency improvement beyond the target is fine, but a lower cost alternative might be selected instead
- Highest efficiency solution doesn't always get implemented!

Relative merits of each semiconductor <u>technology with today's state-of-the-art</u>

Reality tomorrow? More on that later!

Data center power delivery system transitioning from enterprise to hyperscale architecture requires higher power density & efficiency

Addressing the growing demand of AI with higher power on-rack PSUs, using all 3 semiconductor technologies

8 kW server/AI PSU with Si+SiC+GaN

APEC2025

8kW in 73.5x40x446 mm³ → ~100W/inch³

12 kW server/AI PSU with Si+SiC+GaN

2 x 6 kW modules, each with ½ U height, stacked vertically to fit 1U max height

9

2-stage power delivery with vertical power flow

APEC2025

48-to-n V IBC using hybrid switched capacitor topology with GaN + Si

GaN takes IBC efficiency to the next level, due to lower dead-time required for ZVS, dramatically reducing transformer losses as well as transistor loss.

Vertical power delivery to GPU/CPU using chip-embedded Si and novel magnetics design, achieving >92% efficiency

- Chip-embedding LV Si MOSFETs improves EMI and heat extraction
- > Inductor has two tasks: electrical and thermal conduction, tightly bound to each other

APEC2025

Direct ~48 V to core conversion, 300 A_{out} with half-bridge current doubler, using GaN + Si

13

Al training will drive rack power to even higher power, triggering new architectures and topologies

HV IBC driven by 3ph AC input architecture

Si, SiC, and GaN costs dropping at different rates, approaching cost parity/crossover point by end of the decade

Conclusions

- Our mission is to improve data center power delivery efficiency with practical solutions, and the time is now!
- Holistic approach to semiconductor selection enables the best optimization to meet application requirements

> Call to action:

- Develop solutions that meet the application targets, with some efficiency bonus on top of the minimum requirement
- Keep an open mind to all three semiconductor
- > Join us to shape a sustainable AI future

THANK YOU

Thomas Neyer, Infineon Technologies AG

